Applications of the Stereochemically-Controlled Horner-Wittig Reaction: Synthesis of Feniculin, (E)-Non-6-en-1-ol, a Pheromone of the Mediterranean Fruit Fly, (E) - and (Z)-Dec-5-en-1-ol, Tri-substituted Alkenes, and (Z)- α Bisabolene

Antony D. Buss, Nicholas Greeves, Ralph Mason, and Stuart Warren * University Chemical Laboratories, Lensfield Road, Cambridge, CB2 1EW

Stereoselective reduction of the appropriate α-diphenylphosphinoyl ketone or addition of the lithium derivative of an alkyl diphenylphosphine oxide to an aldehyde or a ketone gives Horner-Wittig intermediates and hence the title compounds.

The Horner-Wittig reaction ${ }^{1}$ between lithium derivatives of alkyl diphenylphosphine oxides (1) and aldehydes is erythro selective ${ }^{2,3}$ and provides a synthesis of Z-alkenes, while reduction of the corresponding α-diphenylphosphinoyl ketones (2) is threo selective ${ }^{3.4}$ and gives E-alkenes by elimination of $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$from the intermediates (3) (Scheme 1). Separation of the crystalline erythro and threo intermediates (3) by chromatography or crystallisation is usually easier than separation of the geometrical isomers of the final products. High stereoselectivity in the reduction of ketones (2) results if the larger substituent is placed on the ketone $\left[R^{2}\right.$ in (2)] rather than next to the $\mathrm{Ph}_{2} \mathrm{PO}$ group, in agreement with the predictions of the Felkin model. ${ }^{3}$ We report the synthesis of four alkenes by these methods, and their extension to the synthesis of tribustituted alkenes.

Scheme 1.
Feniculin (10), a constituent of fennel and star anise, ${ }^{5}$ has been synthesized by alkylation ${ }^{5.6}$ from naturally occurring anethole, which already contains the E double bond. To gain the higher stereoselectivity in reduction and stereospecificity of $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$elimination, ${ }^{3}$ we placed the large aryl group next to the carbonyl group and the small alkyl group next to the phosphine oxide in the ketone (8). Reduction of the ketone (8) gave an 11:1 selectivity in favour of threo-(9). Separation by column chromatography gave pure threo-(9) (74%) and a small amount (7%) of the erythro isomer. Elimination of $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$ gave (E)-feniculin (10) showing $v_{\text {max. }} 960 \mathrm{~cm}^{-1}$ (out-of-plane deformation for $E-\mathrm{CH}=\mathrm{CH}$) and $J_{\mathrm{HH}} 15 \mathrm{~Hz}$ across the double bond (Scheme 2). The stereoselectivity resembles that found with other alkoxy-aryl ketones.

(5)

(6)

(7)

(8)

Scheme 2.

Two of the remaining targets are unsaturated alcohols. (E)-Non-6-en-1-ol (14) is a pheromone of the Mediterranean Fruit Fly, ${ }^{7}$ and has been synthesized from dihydropyran in eight steps (unspecified yield) and from propanal in four steps ($40-50 \%$). ${ }^{8}$ A Wittig reaction between the phosphonium salt (11) and propanal gave ${ }^{9} 91 \%$ of a $75: 25 \quad Z: E$ mixture which was improved by radical isomerisation, chromatographic separation of the epoxides and stereospecific removal of oxygen to give pure E-(14). Schlosser's modification ${ }^{10}$ of the Wittig reaction with the same phosphonium salt gave 74% of a $99: 1 E: Z$ mixture. We preferred not to place the longer hydroxypentyl chain next to the $\mathrm{Ph}_{2} \mathrm{PO}$ group both for higher stereoselectivity and because the ketone (12) could easily be made by acylation ${ }^{11}$ of the lithium derivative of $\left(1 ; \mathrm{R}^{1}=\mathrm{Et}\right)$ with a lactone. Reduction of the ketone (12) gave 85% threo alcohol-(13) and 15% erythro-(13), easily separated by flash column chromatography. ${ }^{12}$ Elimination of $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$from threo-(13) required two equivalents of NaH and gave a very high yield of the pure pheromone $E-(14)$: the Z-isomer was not detected by g.l.c. (Scheme 3).
(E)-Dec-5-en-1-ol (17) and its acetate are pheromones of the peach twig borer moth and other insects. ${ }^{13}$ It has been synthesized by routes in which the geometry of the double bond

(11)

(12)

Scheme 3.
is fixed by the opening of tetrahydropyrans, ${ }^{14}$ by reduction of a triple bond, ${ }^{15}$ base-catalysed elimination of $\mathrm{HI},{ }^{16}$ and by a Claisen rearrangement. ${ }^{17}$ The Wittig reaction between pentyl triphenylphosphonium bromide and ${ }^{2} \mathrm{H}$-hydroxytetrahydropyran is 93% Z-selective, ${ }^{15,18}$ although Schlosser's modification ${ }^{10}$ would no doubt be E-selective. Either ketone, (15) or (18), for the Horner-Wittig route could be used in this case as the two side-chains are roughly equal in size, but we preferred the ketone (15) as it can be made by acylation with a lactone and there is some evidence ${ }^{19}$ for low stereoselectivity with functional groups in the upper side chain [R^{1} in (2)]. The stereoselectivity of reduction of the ketone (15) was less $(75: 25)$ than that of ketone (12) $(85: 15)$ but threo-(16) was still isolated in 68% yield. Elimination again gave pure E-alcohol (17) (Scheme 4). The separation also gave 14% erythro-(16) which

Scheme 4.

(18)
gave Z-(17) on elimination: the acetate of $Z-(17)$ is a pheromone of the male turnip moth. ${ }^{13}$ Each unsaturated alcohol E - or Z (17) was free from the other.

Tri-Substituted Alkenes.-The synthesis of olefins with three substituents on the double bond presents special problems of geometrical control. Faulkner's 1971 review ${ }^{20}$ and the many approaches to Cecropia juvenile hormone ${ }^{21}$ gave some solutions, more recently extended by carbometallation of acetylenes ${ }^{22}$ and metal (Pd, Ni) catalysed reactions of vinyl halides, ${ }^{23}$ sulphides, ${ }^{24}$ triffates, ${ }^{25}$ and silyl enol ethers. ${ }^{26}$ The Wittig approach rarely produces much stereoselectivity. Bestmann ${ }^{27}$ achieved reasonable selectivity with salt-free ylides and Still ${ }^{28}$ had some spectacular (200:1) results in the special case of allyl ether synthesis from ylides and α-alkoxyketones. In most cases, the problem is the separation of geometrical isomers of the final product. Although our Horner-Wittig approach has not achieved high stereoselectivity, separation of the diastereoisomeric intermediates (19) or (21) and stereospecific elimination of $\mathrm{Ph}_{2} \mathrm{PO}_{2}{ }^{-}$are usually successful, ${ }^{29}$ giving pure E - or Z-alkenes (Scheme 5).

$$
\text { (1) } \xrightarrow[2 \cdot R^{2} R^{3} C O]{1 . B u L i}
$$

$\mathrm{NaH} \downarrow D M F$

$Z-(\mathbf{2 0})$
$\mathrm{NaH} \uparrow_{\mathrm{DMF}}$

erythro-(21)

threo-(19)
$\mathrm{NaH} \downarrow$ DMF

$E-(20)$

threo-(21)

1. BuLi
2. $\mathrm{R}^{\prime} \mathrm{CHO}$
(22)

Scheme 5.

Route (a). Addition of Lithium Derivatives of Primary Alkyl Phosphine Oxides (1) to Ketones.-We have reported examples of this route with functional groups on the phosphine oxide in the $\alpha\left(\mathrm{PhS},{ }^{30} \mathrm{MeO}^{31}\right), \beta\left(\mathrm{R}_{2} \mathrm{~N}\right),{ }^{32}$ and $\gamma(\text { ketal })^{33}$ positions (Table 1, entries a-f). In general, stereoselectivity is poor, and often favours threo-(19) and hence E-(20). Unfunctionalised

Table 1. Adducts (19) of primary alkyl phosphine oxides (1) and ketones

Entry	R^{1}	R^{2}		R^{3}	Yield$(19)(\%)$	erythro: threo	Isolated yields of single isomers (\%)					
				erythro- (19)			Z-(20)	threo- (19)	$E-(20)$	Ref		
a P	PhS	Ph			Me	a	14:86 ${ }^{\text {a }}$		$90^{\text {b }}$		$90^{\text {b }}$	30
$b \quad$	MeO	Ph		Me	89	50:50	11		25		31	
c	$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	Pr		Me	36	28:74	7	88	29	87	32	
d	$-\mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2}$	Pr^{i}		Me	47	20:80	12	86	35	91	32	
e	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$	Et		Me	77	$50: 50^{\text {c }}$	39	73	38	81	33	
f	$-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$	$\mathrm{Pr}^{\text {i }}$		Me	62	$53: 47^{\text {c }}$	29	82	33	67	33	
g	Me	4-MeC6 H_{4}		Me	83	$35: 65^{\circ}$	29		54		d	
h	PhCH_{2}	Et		Me	79	$53: 47^{\text {c }}$	39	89^{e}	42	87	d	
,	$\mathrm{MeCH}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{Me})_{2}$	$-\mathrm{CH}\left(\mathrm{CH}_{2}\right)$	$\mathrm{H}(\mathrm{Me})=\mathrm{CHCH}_{2}$	Me	57	98:7	53^{f}	91	$4^{\text {f }}$	83	d	

${ }^{a}$ Intermediates (19) not isolated, ratio deduced from ratio of alkenes. ${ }^{b}$ Not separated: mixture of vinyl sulphides converted directly to ketone. ${ }^{c}$ Stereochemistry not definitely assigned. ${ }^{d}$ This work. ${ }^{e} E$-Isomer. ${ }^{f}$ Mixture of diastereoisomer at a third chiral centre.
phosphine oxides gave some problems. Adduct (19g) and adducts (19; $\left.\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\mathrm{Me}\right)$, and $\left(19 ; \mathrm{R}^{1}=\mathrm{Me}\right.$, $\mathrm{R}^{2}=\mathrm{PhCH}_{2}, \mathrm{R}^{3}=\mathrm{Me}$) underwent mostly reverse HornerWittig reactions on treatment with NaH to give ketone $\mathrm{R}^{2} \mathrm{R}^{3} \mathrm{CO}$ and only a trace of alkene. The adduct (19h) was separated into diastereoisomers, but both gave E-3,4-dimethyl-1-phenylpent-2-ene on elimination, presumably by reversion to starting materials. ${ }^{34}$ An adduct $\left(19 ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{3}=\right.$ Me) of benzyl diphenylphosphine oxide gave a mixture of olefins directly in poor yield. However, this approach did give a good stereochemically-controlled synthesis of α-bisabolene; and additions of several functionalised phosphine oxides to symmetrical ketones give good yields of trisubstituted alkenes. ${ }^{32.33}$

Synthesis of α-Bisabolene.-The α-bisabolene in oil of Opopanax is the Z-isomer and has more desirable perfumery qualities ('green and flowery') than the E-isomer ('woody-herbal with a green subnote.. rather fatty'). ${ }^{35}$ Disconnection of the central tri-substituted double bond ${ }^{36}$ suggests a synthesis from the Diels-Alder adduct (23) and the phosphine oxide (24). A Wittig reaction between the same ketone (23) and the phosphonium salt corresponding to (24) gave a 25% yield of x-bisabolene in a $97: 3 Z: E$ ratio (Scheme 6).

The Diels-Alder reaction giving the ketone (23) from isoprene (25) is regiospecific if Lewis acid catalysis is used. ${ }^{37}$ Isoprene (25) was also the starting material for the phosphine oxide (24) via alkylation of ($1 ; \mathrm{R}^{1}=\mathrm{H}$) with 3-methylbut-2enyl bromide ${ }^{38}(6)$. The Horner-Wittig reaction between the lithium derivative of (24) and the ketone (23) gave a mixture of all four diastereoisomers of the adduct (19i), separated by flash column chromatography into a crystalline pair (53%) and an oily pair (4%). Elimination of $\mathrm{Ph}_{2} \mathrm{PO}_{2}^{-}$from the crystalline pair gave pure $(Z)-\alpha$-bisabolene and, from the oily pair, pure $(E)-\alpha-$ bisabolene (Scheme 7). The stereochemistry was assigned by comparison of the $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ n.m.r. spectra. ${ }^{35}$ The crystalline pair of alcohols must both be erythro-(19i) and the oily pair threo, and the chromatographic separation operated only on the functionalised chiral centres and ignored the minor chiral centre on the ring. G.l.c. and i.r. analysis showed that each isomer of α-bisabolene was free from the other but that both contained a trace of the ketone (23), undetectable by n.m.r., presumably derived from reversal of the Horner-Wittig reaction. ${ }^{34}$

Route (b). Addition of Lithium Derivatives of Secondary Alkyl Phosphine Oxides (22) to Aldehydes.-We had previously made dienes ${ }^{39,40}$ (entries a, b; Table 2), vinyl sulphides ${ }^{30,41}$ (entries c,

Scheme 7.
d), and unsaturated ketals ${ }^{33,42}$ (entries e, f) by this route observing little stereoselectivity except in the vinyl sulphide (20d) where reversible addition probably favours ${ }^{41}$ threo-(21d). Nevertheless, pure single isomers $E-(\mathbf{2 0})$ or $Z-(\mathbf{2 0})$ can be obtained in most cases. We have now studied adduct (21g) to investigate the selectivity of the direct Horner-Wittig reaction and the reduction route $[c f$. (2) to (3)] in this simple trisubstituted system.
The secondary alkyl phosphine oxide [22; $\mathrm{R}^{1}=\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}$, $\mathrm{R}^{2}=\mathrm{Me}$] gave a good yield of adducts (21g) with low stereoselectivity in favour of threo-($\mathbf{2 1 g}$). Separation was easy and pure samples (g.l.c.) of each alkene were formed in very

Table 2. Adducts (21) of secondary alkyl phosphine oxides (22) and aldehydes

Entry	R^{1}	R^{2}	R^{3}	$\begin{gathered} \text { Yield } \\ (21)(\%) \end{gathered}$	erythro: threo	Isolated yields of single isomers (\%)				
						erythro- (21)	Z(-20)	threo-(21)	$E-(20)$	Ref.
a		Me	Me	79^{a}	63:27	50	80	29	80	39
b	$\mathrm{Me}_{2} \mathrm{C}=\mathrm{CMe}$	Me	Me	$58^{\text {a }}$	43:57	25	70	33	80	40
c	PhS	Et	Ph	b	43:57		$93{ }^{\text {b }}$		$93{ }^{\text {b }}$	30
d	MeS	Et	Ph	$90^{\text {a }}$	20:80	18	92	72	100	41
e	$-\mathrm{CH}_{2} \overleftarrow{\mathrm{C}(\mathrm{Me}) \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}}$	Me	Pr	$55^{\text {a }}$	67:33	38	76	17		42
f	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}(\mathrm{Me}) \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}$	Me	Ph	$72^{\text {a }}$	49:51	$35^{\text {c }}$		37°		33
g	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}$	Me	Me	81^{a}	47:53	38	92	43	93	d

${ }^{a}$ Isolated only as separated diastereoisomers. ${ }^{b}$ Alkene formed directly as mixture: ratio from n.m.r. ${ }^{\text {c }}$ Stereochemistry not definitely assigned. ${ }^{d}$ This work.

Scheme 8.
good yield. The alternative route, ${ }^{3}$ the reduction of the ketone (26), gave a ratio of $67: 33$ in favour of threo- $\mathbf{(2 1 g}$) (Scheme 8).

Conclusions

Either route to tri-substituted alkenes usually gives single isomers of the alkene after separation of the diastereoisomers of the intermediate (19) or (21), but each case must be taken separately, and high stereoselectivity is not observed.

Experimental

M.p.s were determined on a Buchi 510 melting point apparatus or a Kofler hot stage, and are uncorrected. ${ }^{1}$ H N.m.r. spectra were recorded on a Varian Associates EM 390 spectrometer at 90 MHz and on Bruker WH-250 and WH-400 spectrometers at 250 and $400 \mathrm{MHz} .{ }^{13} \mathrm{C}$ N.m.r. spectra were recorded at 62.8 MHz on a Bruker WH-250 spectrometer. Chemical shifts are given in p.p.m. downfield from tetramethylsilane. Mass spectra were recorded on A.E.I.-Kratos MS902 and MS30 spectrometers. High resolution mass spectra employed a DS50S data system. I.r. spectra were recorded on a Perkin-Elmer 297 spectrometer. Preparative t.l.c. was run on silica gel GF_{254} (1 mm) plates, t.l.c. was run on Merck Kieselgel $60 \mathrm{~F}_{254}$ plates. Column chromatography was performed on Merck Kieselgel 60 70-230 mesh and flash chromatography on Merck Kieselgel 60 $230-400$ mesh. H.p.l.c. was carried out using a $50 \mathrm{~cm} \times 1 \mathrm{~cm}$ steel column packed with Lichrosorb SI60 silica, pressurised by an Altex 110A pump. Dry THF was freshly distilled from potassium using benzophenone radical as an indicator in a recycling still. Micro-analyses were carried out by technical staff at the University Chemical Laboratory, Cambridge. All solvents were distilled before use.

Methyl 4-(3-Methylbut-2-enyloxy)benzoate (7) was prepared from methyl p-hydroxybenzoate, 1 -bromo-3-methylbut-2-ene (6), potassium iodide, and anhydrous potassium carbonate and had m.p. $43-44.5^{\circ} \mathrm{C}$ (from hexane, lit., ${ }^{43} 45-46^{\circ} \mathrm{C}$).

2-Diphenylphosphinoyl-1-[4-(3-methylbut-2-enyloxy)]phenyl-propan-1-one (8).-Acylation of ethyl diphenylphosphine
oxide 3 ($226 \mathrm{mg}, 0.98 \mathrm{mmol}$) by the above ester ($220 \mathrm{mg}, 1 \mathrm{mmol}$) gave the ketone (8) ($250 \mathrm{mg}, 61 \%$) as needles, m.p. 115$115.5^{\circ} \mathrm{C}, R_{\mathrm{F}}(\mathrm{EtOAc}) 0.4, v_{\max .}$ (Nujol) $1662(\mathrm{C}=\mathrm{O}), 1640(\mathrm{C}=\mathrm{C})$, 1600 (aryl), $1440(\mathrm{Ph}-\mathrm{P}), 1240(\mathrm{P}=\mathrm{O})$, and $840 \mathrm{~cm}^{-1}(p-$ disubstituted Ar$) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.9(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.88(2 \mathrm{H}, \mathrm{d}, J 8$ $\mathrm{Hz}, \mathrm{ArH}), 7.53(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.86(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{ArH}), 5.53(1$ $\mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz},=\mathrm{CHCH} 2), 4.55\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and PCHMe), 1.83 (3 $\mathrm{H}, \mathrm{s},=\mathrm{CMe}), 1.80(3 \mathrm{H}, \mathrm{s},=\mathrm{CMe})$, and $1.57\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HP}} 16, J_{\mathrm{HMe}}\right.$ $8 \mathrm{~Hz}, \mathrm{PCH} M e$) (Found: $M^{+}, 418.1700 . \mathrm{C}_{26} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$ requires M, 418.4703); $m / z 418\left(5 \%, M^{+}\right)$and $350\left(100, M-\mathrm{C}_{5} \mathrm{H}_{8}\right)$.

2-Diphenylphosphinoyl-1-[4-(3-methylbut-2-enyloxy)]phenyl-propan-1-ol (9).-Reduction of the above ketone ($2.8 \mathrm{~g}, 5.5$ $\mathrm{mmol})$ with sodium borohydride ${ }^{3}$ gave a yellow oil (2.3 g) separated by column chromatography on silica eluting with EtOAc to give the threo-alcohol $(9)(1.7 \mathrm{~g}, 74 \%)$, m.p. $95.5-97{ }^{\circ} \mathrm{C}$ (from EtOAc-hexane), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.8$, $v_{\text {max }}$. (Nujol) $3220(\mathrm{OH})$, 1600 (aryl), $1230\left(\mathrm{P}=\mathrm{O}\right.$), and $830 \mathrm{~cm}^{-1}$ (p-disubstituted Ar); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.90(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.63(6 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH}), 7.33(2 \mathrm{H}, \mathrm{d}$, $J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.92(2 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 5.56(1 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.=\mathrm{CHCH}_{2}\right), 4.86\left(1 \mathrm{H}, \mathrm{t}, J_{\mathrm{HH}}=J_{\mathrm{Hoн}}=7.5 \mathrm{~Hz}, \mathrm{CHOH}\right), 4.54(2$ $\left.\mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right), 4.0\left(1 \mathrm{H}\right.$, br s, exchanges with $\mathrm{D}_{2} \mathrm{O}$, $\mathrm{OH}), 3.0(1 \mathrm{H}, \mathrm{m}, \mathrm{PC} H \mathrm{Me}), 1.84(3 \mathrm{H}, \mathrm{s},=\mathrm{CMe}), 1.80(3 \mathrm{H}, \mathrm{s}$, $=\mathrm{CMe})$, and $0.80\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HH}} 6, J_{\mathrm{HP}} 16.5 \mathrm{~Hz}, \mathrm{PCH} M e\right) ; m / z 420$ ($30 \%, M^{+}$) and $352\left(100, M-\mathrm{C}_{5} \mathrm{H}_{8}\right.$), and the erythro-alcohol (9) $(160 \mathrm{mg}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.7-8.2(4 \mathrm{H}, \mathrm{m}, o-\mathrm{PhP}), 7.4-7.7(6 \mathrm{H}$, $\mathrm{m}, \mathrm{PhP}), 7.25(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar}), 6.87(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{Ar}), 5.47(1$ H, br t, $J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}=$), $5.24(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}, \mathrm{CHOH}), 4.48(2$ $\left.\mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}=\right), 2.53(1 \mathrm{H}$, quint, $J 7 \mathrm{~Hz}, \mathrm{PC} H \mathrm{Me})$, $1.78(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 1.71(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $1.01\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{PH}} 16, J_{\mathrm{HH}}\right.$ $7 \mathrm{~Hz}, \mathrm{PCHMe}$).
(E)-1-[4-(3-Methylbut-2-enyloxy)phenyl]prop-1-ene, Feniculin (10).-A stirred solution of sodium hydride $(60 \mathrm{mg}, 50 \%$ dispersion in oil) and the above threo-alcohol (514 mg) in dry DMF was heated to $50^{\circ} \mathrm{C}$ for 30 min . The cooled solution was poured into water and extracted with ether. The extracts were washed with water, dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent was evaporated under reduced pressure. The yellow oil was distilled (Kugelrohr) to give feniculin ($175 \mathrm{mg}, 71 \%$), b.p. 109$120^{\circ} \mathrm{C} / 0.1-0.15 \mathrm{mmHg}, R_{\mathrm{F}}(\mathrm{EtOAc}) 0.7$, $v_{\text {max. }}$ (liquid film) 960 (out-of-plane def. for trans $\mathrm{CH}=\mathrm{CH}$), 840 (p-disubstituted aryl), and $790 \mathrm{~cm}^{-1}\left(\mathrm{CH}=\mathrm{CMe}_{2}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.32(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}$, ArH), $6.90(2 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}, \mathrm{ArH}), 6.49(1 \mathrm{H}, \mathrm{d}, J 15 \mathrm{~Hz}$, $\mathrm{ArCH}=\mathrm{CH}), 6.08\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HH}} 15, J_{\mathrm{HMe}} 6 \mathrm{~Hz}, \mathrm{ArCH}=\mathrm{CH} \mathrm{Me}\right)$, $\left.5.56(1 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz},=\mathrm{CHCH})_{2}\right), 4.54\left(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz},=\mathrm{CHCH}_{2}\right)$, $1.88\left(3 \mathrm{H}, \mathrm{d}, J_{\mathrm{HMe}} 6 \mathrm{~Hz},=\mathrm{CHMe}\right), 1.84(3 \mathrm{H}, \mathrm{s},=\mathrm{CMe})$, and 1.78 (3 $\mathrm{H}, \mathrm{s},=\mathrm{CMe}$) (Found: M^{+}, 202.1357. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$ requires M,
202.1358); $m / z 202\left(10 \%, M^{+}\right)$and $134\left(100, M-\mathrm{C}_{5} \mathrm{H}_{8}\right)$, $\lambda_{\text {max. }}(\mathrm{EtOH}) 271,259,251$, and 206 nm .

3-Diphenylphosphinoyl-9-hydroxynonan-4-one (12).-Butyllithium ($6.7 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) was added dropwise from a syringe to a stirred solution of diphenylpropylphosphine oxide $\left(\mathbf{1} ; \mathbf{R}^{1}=\mathrm{Et}\right)(2.44 \mathrm{~g}, 0.1 \mathrm{~mol})$ in dry THF $(30 \mathrm{ml})$ at $0{ }^{\circ} \mathrm{C}$. After 15 min the red reaction solution was cooled to $-78^{\circ} \mathrm{C}$ (acetone-dry ice) and ε-caprolactone ($1.14 \mathrm{~g}, 0.01 \mathrm{~mol}$) was added dropwise from a syringe. The temperature was maintained at $-78{ }^{\circ} \mathrm{C}$ for 10 min and the reaction was quenched by adding a saturated aqueous solution of ammonium chloride (20 ml). The reaction mixture was allowed to warm to room temperature before the THF was evaporated under reduced pressure. The aqueous residues were extracted with dichloromethane ($3 \times 30 \mathrm{ml}$) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness to give the hydroxy ketone as needles ($2.9 \mathrm{~g}, 81.0 \%$), m.p. $89-91^{\circ} \mathrm{C}$ (from EtOAc-Et ${ }_{2} \mathrm{O}$) (Found: C, 70.1; H, 7.7; P, 8.6. M^{+}, 358.1688. $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}, 7.6 ; \mathrm{P}, 8.7 \%$. M , $358.1698), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.2$, $v_{\text {max. }} 3300(\mathrm{OH}), 1705(\mathrm{C}=\mathrm{O}), 1440$ $(\mathrm{P}-\mathrm{Ph}), 1.85$, and $1195 \mathrm{~cm}^{-1} ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.9-7.1(10 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\right), 3.7-3.2\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHP}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 2.7(1 \mathrm{H}, \mathrm{s}$, $\mathrm{OH}), 2.4\left(2 \mathrm{H}, \mathrm{t}, J\right.$ ca. $\left.6 \mathrm{~Hz}, \mathrm{COCH}_{2}\right), 2.2-1.1[8 \mathrm{H}, \mathrm{m}$, $\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{2} \mathrm{OH}$ and $\left.\mathrm{CH}_{2} \mathrm{Me}\right]$, and $0.85(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}) ; m / z$ $358(10 \%), 244\left(56 \%, \mathrm{Ph}_{2} \mathrm{POPr}\right), 229\left[82 \%, \mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2}{ }^{+}\right]$, $202\left(92 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$, and $201\left(100 \%, \mathrm{Ph}_{2} \mathrm{PO}^{+}\right)$.

Reduction of the Hydroxy Ketone (12).-Sodium borohydride $(135 \mathrm{mg}, 3.56 \mathrm{mmol})$ was added in one portion to a stirred solution of the hydroxy ketone (12) ($1.28 \mathrm{~g}, 3.56 \mathrm{mmol}$) in ethanol (20 ml). The reaction mixture was heated under reflux for 3 h , cooled to room temperature and a saturated aqueous solution of ammonium chloride (15 ml) was added. The ethanol was evaporated under reduced pressure and several drops of dilute HCl were added to the aqueous residues. After being diluted with brine (20 ml), the aqueous reaction mixture was extracted with dichloromethane ($3 \times 50 \mathrm{ml}$) and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to dryness to give the product as a mixture of diastereoisomers which was separated by flash column chromatography (elution with acetone). The first diastereoisomer eluted was assigned the ($6 R S, 7 S R$)-configuration erythro alcohol (13) ($195 \mathrm{mg}, 15.2 \%$), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.15 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.9-7.1\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.0(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.55\left(2 \mathrm{H}, \mathrm{br} \mathrm{t}, J\right.$ ca. $\left.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.15(2 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, 2 \times \mathrm{OH}), 2.5-1.1\left[11 \mathrm{H}, \mathrm{m}, \mathrm{CHP}, \mathrm{CH}_{2} \mathrm{Me}\right.$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4}\right]$, and $0.9(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me})$. The second diastereoisomer eluted from the column was the ($6 R S, 7 R S$)-alcohol threo-(13), needles $\left(1.085 \mathrm{~g}, 84.8 \%\right.$), m.p. $114-116{ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum, b.p. $40-60^{\circ} \mathrm{C}$) (Found: C, 69.6 ; H, 8.1; P, 8.4. M^{+}, 360.1857. $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 69.9 ; \mathrm{H}, 8.5 ; \mathrm{P}, 8.6 \%$. M, $360.1854), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.1, v_{\text {max. }} 3350(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$, and $1170 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.0-7.25\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 4.0$ $(1 \mathrm{H}, \mathrm{dm}, \mathrm{CHOH}), 3.7(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 2 \times \mathrm{OH}), 3.5(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\mathrm{CH} 2 \mathrm{OH}), 2.4(1 \mathrm{H}, \mathrm{m}, \mathrm{CHP}), 1.9-1.1\left[10 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{Me}\right.$ and $\left.\mathrm{CH}\left(\mathrm{CH}_{2}\right)_{4}\right]$, and $0.9(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}) ; m / z 360(2 \%), 273$ $\left[100 \% M-\left(\mathrm{CH}_{2}\right)_{5} \mathrm{OH}\right], 244\left(70 \%, \mathrm{Ph}_{2} \mathrm{POPr}\right), 229$ [98\%, $\left.\mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2}{ }^{+}\right], 202\left(85 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$, and $201\left(98 \%, \mathrm{Ph}_{2} \mathrm{PO}^{+}\right)$.
(E)-Non-6-en-1-ol (14).-Sodium hydride ($50 \mathrm{mg} ; 80 \%$ dispersion in oil, 1.67 mmol) was added in one portion to a stirred solution of the ($6 R S, 7 R S$)-adduct threo-(13) (300 mg , 0.833 mmol) in dry DMF (20 ml). The clear reaction solution was warmed to $50^{\circ} \mathrm{C}$ for 30 min by which time a white solid had precipitated from solution. The reaction mixture was cooled and the precipitate dissolved by the addition of water (25 ml). The mixture was diluted with brine (15 ml) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{ml})$. The combined organic extracts were washed
with water ($3 \times 40 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated under reduced pressure. Bulb-to-bulb distillation (Kugelrohr apparatus) gave the alkene ($115 \mathrm{mg}, 97.5 \%$) as a unpleasant-smelling, colourless liquid, b.p. $92-94^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$ (lit., ${ }^{8}$ b.p. $83-$ $87^{\circ} \mathrm{C} / 0.25 \mathrm{mmHg}$), $R_{\mathrm{F}} 0.7, v_{\text {max. }}$ (liquid film) $3340(\mathrm{OH}), 1050$ (CO), and $965 \mathrm{~cm}^{-1}\left(\mathrm{C}=\mathrm{H}\right.$ out of plane def.); $\delta_{\mathbf{H}}\left(\mathrm{CCl}_{4}\right) 5.25(2 \mathrm{H}$, $\mathrm{m}, \mathrm{CH}=\mathrm{CH}), 3.4\left(2 \mathrm{H}, \mathrm{t}, J 5 \mathrm{~Hz}, \mathrm{C} \mathrm{H}_{2} \mathrm{OH}\right), 3.25(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH})$, $1.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 1.25\left(6 \mathrm{H}\right.$, remaining $\left.\mathrm{CH}_{2}\right)$, and $0.85(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}) ; m / z 124\left(10 \%, M-\mathrm{H}_{2} \mathrm{O}\right), 95(57 \%), 82$ (62), and 67 (100). The (Z)-isomer was not detected by g.l.c. (columns 2, 4, and 5).

6-Diphenylphosphinoyl-1-hydroxydecan-5-one (15).-Butyllithium (20.1 ml of a 1.5 m solution in hexane), pentyldiphenylphosphine oxide ${ }^{3}(8.16 \mathrm{~g}, 30 \mathrm{mmol})$ in dry THF (90 ml) under nitrogen at $0^{\circ} \mathrm{C}$, and δ-valerolactone ($3.0 \mathrm{~g}, 30 \mathrm{mmol}$) gave the hydroxy ketone (15) $(9.63 \mathrm{~g}, 86.3 \%$) as needles (from EtOAchexane), m.p. $83-84^{\circ} \mathrm{C}$ (Found: C, 70.8; H, 8.1; P, 8.1. M^{+} $372.1860 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{P}$ requires $\mathrm{C}, 70.9 ; \mathrm{H}, 7.85 ; \mathrm{P}, 8.3 \% . \mathrm{M}$, $372.1854) ; R_{\mathrm{F}}(\mathrm{EtOAc}) 0.14 ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 3340(\mathrm{OH}), 1698$ $(\mathrm{C}=\mathrm{O}), 1440(\mathrm{Ph}-\mathrm{P}), 1195$, and $185 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $90 \mathrm{MHz}, 8.05-7.45\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 3.8-3.45(1 \mathrm{H}, \mathrm{m}$, CHP), $3.55\left(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.58(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{CO}\right), 2.32(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.4-1.9\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CHP}\right), 1.9$ $1.0\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right.$ and $\left.\left(\mathrm{CH}_{2}\right)_{2}\right]$, and $0.8(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{Me})$; $m / z \quad 372\left(0.84 \%, \quad M^{+}\right), 354\left(0.6, \quad M-\mathrm{H}_{2} \mathrm{O}\right), 272$ (20 , $\left.\mathrm{Ph}_{2} \mathrm{POPent}\right), 229$ [62, $\left.\mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2}\right], 219$ (25), 202 (100 , $\mathrm{Ph}_{2} \mathrm{POH}$), and 201 ($60, \mathrm{Ph}_{2} \mathrm{PO}$).

6-Diphenylphosphinoyldecane-1,5-diol (16).-Sodium borohydride ($1.0 \mathrm{~g}, 26.3 \mathrm{mmol}$) and the hydroxy ketone (15) (5.0 g , 13.4 mmol) under nitrogen in ethanol (75 ml) gave the product as a mixture of diastereoisomers, which were separated by fractional crystallisation from EtOAc-hexane. The first diastereoisomer to crystallise was assigned the ($5 R S, 6 R S$)configuration threo-(16) as needles ($3.4 \mathrm{~g}, 67.6 \%$), m.p. 145 $146{ }^{\circ} \mathrm{C}$ (Found: C, 70.4; H, 8.5; P, 8.0. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}$ requires C , $70.6 ; \mathrm{H}, 8.35 ; \mathrm{P}, 8.3 \%), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.12, \mathrm{v}_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3380$ $(\mathrm{OH}), 1440(\mathrm{Ph}-\mathrm{P})$, and $1160 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right)$ 8.1-7.4 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$), $4.0(2 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}$ and OH$), 3.55$ $\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.45(2 \mathrm{H}, \mathrm{m}, \mathrm{C} H \mathrm{P}$ and OH$), 2.0-0.9$ [$12 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}$ and $\left(\mathrm{CH}_{2}\right)_{3}$], and $0.75(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{Me})$ (Found: $M^{+}-\mathrm{H}_{2} \mathrm{O}, 356.1901 . \mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires M $\mathrm{H}_{2} \mathrm{O}, 35.1905$); $m / z 356\left(1.03 \%, M-\mathrm{H}_{2} \mathrm{O}\right), 301$ [63, $M-$ $\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}\right], 272$ (30, $\mathrm{Ph}_{2} \mathrm{POPent}$), 229 [85, $\mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2}$], 202 (100, $\mathrm{Ph}_{2} \mathrm{POH}$), and 201 ($73, \mathrm{Ph}_{2} \mathrm{PO}$). The second diastereoisomer was obtained by column chromatography on silica eluting with EtOAc-MeOH (93:7) and was assigned the ($5 R S, 6 S R$)-configuration erythro-(16) $(0.704 \mathrm{~g}, 14 \%$) as needles (EtOAc-hexane), m.p. 92-93 ${ }^{\circ} \mathrm{C}$ (Found: C, 70.5; H, 8.35; P, 8.3. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{P}$ requires $\left.\mathrm{C}, 70.6 ; \mathrm{H}, 8.35 ; \mathrm{P}, 8.3 \%\right), R_{\mathrm{F}}(\mathrm{EtOAc})$ $0.18, v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3400(\mathrm{OH}), 1440(\mathrm{PhP})$, and $1170 \mathrm{~cm}^{-1}$ $\mathrm{cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right) 8.05-7.35\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right)$, $4.05(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 3.9(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OH}), 3.55(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}$, $\left.\mathrm{CH} \mathrm{C}_{2} \mathrm{OH}\right), 2.2(1 \mathrm{H}, \mathrm{m}, \mathrm{CHP}), 2.1-0.9\left[12 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{3}\right.$ and $\left(\mathrm{CH}_{2}\right)_{3}$], and $0.65(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{Me})$ (Found: $M^{+}-\mathrm{H}_{2} \mathrm{O}$, 35.1916. $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{P}$ requires $M-\mathrm{H}_{2} \mathrm{O}, 356.1905$); m/z 356 $\left(0.95 \%, M-\mathrm{H}_{2} \mathrm{O}\right), 301 \quad\left[35, M-\left(\mathrm{CH}_{2}\right)_{4} \mathrm{OH}\right], 272$ (50, $\mathrm{Ph}_{2} \mathrm{POPent}$), 229 [95, $\mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2}$], 202 (100, $\mathrm{Ph}_{2} \mathrm{POH}$), and $201\left(80, \mathrm{Ph}_{2} \mathrm{PO}\right)$. The mixed residue (0.85 g) was analysed by h.p.l.c. with $\mathrm{EtOAc}-\mathrm{MeOH}(20: 1)$ as eluant and was found to contain $34 \% \mathrm{~L} R_{\mathrm{F}}$ and $59 \% \mathrm{H} R_{\mathrm{F}}$. Overall yield is 97.4% with 3:1 diastereoselectivity.
(E)-Dec-5-en-1-ol [E-(17)].-Sodium hydride (70 mg, 1.46 $\mathrm{mmol}, 50 \%$ dispersion in oil) and the ($5 R S, 6 R S$) diol threo-(16) $(260 \mathrm{mg}, 0.70 \mathrm{mmol})$ in dry DMF (20 ml) gave the alkene (104 $\mathrm{mg}, 95.9 \%$) as an unpleasant-smelling clear liquid, b.p. $83-$
$85^{\circ} \mathrm{C} / 0.15 \mathrm{mmHg}$ (lit., ${ }^{14}$ b.p. $100-120^{\circ} \mathrm{C} / 14 \mathrm{mmHg}$) (Found: $\mathrm{C}, 76.7$; $\mathrm{H}, 13.0 . M^{+}$, 156.1526. $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ requires $\mathrm{C}, 76.9 ; \mathrm{H}$, $12.9 \% ; M, 156.1514)$, $v_{\text {max. }}$ (liquid film) $3300(\mathrm{OH})$, and 988 $\mathrm{cm}^{-1}\left(E-\mathrm{HC}=\mathrm{CH}\right.$ def.); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.6-5.15(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}=\mathrm{CH}), 3.6\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.2(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 1.95(4$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH} \mathrm{C}_{2}\right), 1.5-1.1\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right.$ and $\left(\mathrm{CH}_{2}\right)_{2}$], and $0.87(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}) ; m / z 156\left(4 \%, M^{+}\right), 138$ ($18, M-\mathrm{H}_{2} \mathrm{O}$), and $55\left(100, \mathrm{C}_{4} \mathrm{H}_{7}\right)$. The Z-isomer was not detected by g.l.c. on a 15% Carbowax 20 M on Chromosorb W column.
(Z)-Dec-5-en-1-ol [Z-(17)].-In a similar way, sodium hydride (40 mg), ($5 R S, 6 S R$) diol erythro- $(\mathbf{1 6})(150 \mathrm{mg})$ in DMF (10 ml) after 2 h at $50^{\circ} \mathrm{C}$, gave the alkene ($61 \mathrm{mg}, 97.5 \%$) as an unpleasant-smelling clear liquid, b.p. $100-105^{\circ} \mathrm{C} / 0.2 \mathrm{mmHg}$ (lit., ${ }^{14}$ b.p. $114-115^{\circ} \mathrm{C} / 14 \mathrm{mmHg}$), $v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3600(\mathrm{OH})$, $1600(\mathrm{C}=\mathrm{C})$, and $1455 \mathrm{~cm}^{-1}\left(\mathrm{CH}\right.$ def.); $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.45-5.3(2$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}), 3.65\left(2 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 2.05(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CHCH}_{2}\right), 1.7-1.2\left[8 \mathrm{H}, \mathrm{m},\left(\mathrm{CH}_{2}\right)_{2}\right.$ and $\left.\left(\mathrm{CH}_{2}\right)_{2}\right], 0.9$ $(3 \mathrm{H}, \mathrm{t}, J 6 \mathrm{~Hz}, \mathrm{Me})$ (Found: $M^{+}-\mathrm{H}, 155.1429 . \mathrm{C}_{10} \mathrm{H}_{20} \mathrm{O}$ requires $M-\mathrm{H}, 155.1436)$; $m / z 155(53 \%, M-\mathrm{H})$, and 98 ($100, M-\mathrm{C}_{4} \mathrm{H}_{10}$). The E-isomer was not detected by g.l.c. as above.

3-Diphenylphosphinoyl-2-(p-tolyl)butan-2-ol (19g).-Butyllithium ($5.8 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) ethyldiphenylphosphine oxide $(2.0 \mathrm{~g}, 8.692 \mathrm{mmol})$ in dry THF (30 ml) and 4-methylacetophenone $(1.17 \mathrm{~g}, 8.692 \mathrm{mmol})$ gave the adduct as a mixture of diastereoisomers which was separated by flash chromatography (elution with $\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOAc}, 4: 1$). The first diastereoisomer eluted from the column was obtained as needles ($\mathrm{H} R_{\mathrm{F}}$ isomer) ($1.71 \mathrm{~g}, 53.9 \%$), m.p. $224-226^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, $75.5 ; \mathrm{H}, 7.0 ; \mathrm{P}, 8.5 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{2}$ requires $\mathrm{C}, 75.8 ; \mathrm{H}, 6.9$; $\mathrm{P}, 8.5 \%), R_{\mathrm{F}}\left(\mathrm{Et}_{2} \mathrm{O}-\mathrm{EtOAc}, 4: 1\right) 0.5$, $\mathrm{v}_{\text {max. }} 3380(\mathrm{OH}), 1440$ $(\mathrm{P}-\mathrm{Ph})$, and $1160 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.1-7.0(14 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ and Ar$), 5.2(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.9\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HMe}}=J_{\mathrm{HP}}=7\right.$ $\mathrm{Hz}, \mathrm{CHP}$), 2.3 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), $1.45(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $0.85(3 \mathrm{H}$, dd, $\left.J_{\text {HMe }} 7, J_{\text {MeP }} 16 \mathrm{~Hz}, \mathrm{CHMe}\right) ; m / z 230\left(100 \%, \mathrm{Ph}_{2} \mathrm{OEt}\right)$ and $202\left(40 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$. The second diastereoisomer eluted from the column was obtained as needles ($\mathrm{L} R_{\mathrm{F}}$ isomer) 920 mg , 29.0%), m.p. $183-185^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 75.7; H, 7.1; $\mathrm{P}, 8.6 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ requires $\left.\mathrm{C}, 75.8 ; \mathrm{H}, 6.9 ; \mathrm{P}, 8.5\right), R_{\mathrm{F}}\left(\mathrm{Et}_{2} \mathrm{O}-\right.$ EtOAc, 4:1) 0.4, $v_{\text {max. }} 3360(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$, and $1170 \mathrm{~cm}^{-1}$ $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85-6.6\left(14 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ and ArH$), 5.45(1$ $\mathrm{H}, \mathrm{brs}, \mathrm{OH}), 2.9\left(1 \mathrm{H}, \mathrm{dq}, J_{\mathrm{HMe}}=J_{\mathrm{HP}}=8 \mathrm{~Hz}, \mathrm{CHP}\right), 2.1(3 \mathrm{H}, \mathrm{s}$, ArMe), $1.5(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $1.15\left(3 \mathrm{H}, \mathrm{dd}, \mathrm{J}_{\mathrm{HMe}} 7, J_{\mathrm{MeP}} 17 \mathrm{~Hz}\right.$, $\mathrm{CHMe}) ; m / z 230\left(100 \%, \mathrm{Ph}_{2} \mathrm{POEt}\right)$ and $202\left(34 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$.

2-Diphenylphosphinoyl-3-methyl-1-phenylpentan-3-ol(19h)In the same way, butyl-lithium ($6.7 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) 2 phenylethyldiphenylphosphine oxide ${ }^{44}\left(1 ; \mathrm{R}^{1}=\mathrm{CH}_{2} \mathrm{Ph}\right)(3.06$ $\mathrm{g}, 0.01 \mathrm{~mol}$) in dry THF (40 ml) and butan-2-one gave the adduct as a mixture of diastereoisomers which was separated by preparative h.p.l.c. (elution with $\mathrm{Et}_{2} \mathrm{O}$). The first diastereoisomer eluted from the column was obtained as needles ($\mathrm{H} R_{\mathrm{F}}$ isomer) $\left(1.617 \mathrm{~g}, 42.8 \%\right.$), m.p. $189-190^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, $76.3 ; \mathrm{H}, 7.35 ; \mathrm{P}, 8.50 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 76.1 ; \mathrm{H}, 7.2 ; \mathrm{P}$, $8.2 \%), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.5, \mathrm{v}_{\text {max }} 3330(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$, and $1150 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.9-6.5(15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}), 4.65$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.2-2.7\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHP}\right.$ and $\left.\mathrm{PhCH}_{2}\right), 1.7(2 \mathrm{H}, \mathrm{q}, J 7$ $\left.\mathrm{Hz}, \mathrm{CH}_{2} \mathrm{Me}\right), 1.2(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $0.8\left(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right)$; $m / z 360\left(12 \%, M-\mathrm{H}_{2} \mathrm{O}\right), 349(27 \%, M-\mathrm{Et}), 306[27 \%$, $\left.\mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\right]$, and $202\left(100 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$. The second diastereoisomer eluted from the column was obtained as needles ($\mathrm{L} R_{\mathrm{F}}$ isomer) $\left(1.457 \mathrm{~g}, 38.5 \%\right.$), m.p. $158-159{ }^{\circ} \mathrm{C}$ (from EtOAclight petroleum, b.p. $60-80^{\circ} \mathrm{C}$) (Found: C, 75.8; H, 7.2; P, 8.3), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.5, v_{\text {max }} 3420(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$, and $1180 \mathrm{~cm}^{-1}$ $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathbf{H}}\left(\mathrm{CDCl}_{3}\right) 7.8-6.45(15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}), 4.5(1 \mathrm{H}, \mathrm{br} \mathrm{s}$,
$\mathrm{OH}), 3.3-2.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CHP}\right.$ and $\left.\mathrm{PhCH}_{2}\right), 1.75-1.2$ (total 5 H , q overlain by $\mathrm{s}, \mathrm{CH}_{2} \mathrm{Me}$ and Me), and $0.8(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right) ; m / z 360\left(10 \%, M-\mathrm{H}_{2} \mathrm{O}\right), 349(52 \%, M-\mathrm{Et}), 306$ $\left[24 \%, \mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\right]$, and $202\left(100 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$.

Reaction of the $H R_{\mathrm{F}}$ isomer threo-(19h) with Sodium Hydride.-Sodium hydride (79 mg ; 80% dispersion in oil, 2.64 mmol) was added in one portion to a stirred solution of the above $\mathrm{H} R_{\mathrm{F}}$ isomer ($500 \mathrm{mg}, 1.32 \mathrm{mmol}$) in dry DMF (50 ml). The clear reaction solution was warmed to $50^{\circ} \mathrm{C}$ for 3 h before cooling and adding water (20 ml). The mixture was then diluted with brine $(40 \mathrm{ml})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. The combined organic extracts were washed with water $(3 \times 50 \mathrm{ml})$, dried over MgSO_{4}, and the solvent evaporated under reduced pressure. Bulb-to-bulb distillation (Kugelrohr apparatus) gave (E)-3-methyl-1-phenylpent-2-ene (E)-($\mathbf{2 0 h}$) as a colourless liquid ($185 \mathrm{mg}, 87.3 \%$), $v_{\text {max. }}$ (liquid film) 1605,1495 , and $1450(\mathrm{ArH})$, 935 , and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.15(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 5.25(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J$ $7 \mathrm{~Hz},=\mathrm{CH}), 3.3\left(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}, \mathrm{PhCH}_{2}\right), 2.1(2 \mathrm{H}, \mathrm{q}, J 8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 1.7(3 \mathrm{H}, \mathrm{br} \mathrm{s},=\mathrm{CMe})$, and $1.0\left(3 \mathrm{H}, \mathrm{t}, J 8 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Me}\right)$. G.l.c. analysis (column 2) indicated that the product was a single isomer.

Reaction of the $L R_{\mathbf{F}}$ isomer of erythro-(19h) with Sodium Hydride.-In the same way, the $\mathrm{L} R_{\mathrm{F}}$ isomer $(500 \mathrm{mg}, 1.32$ mmol) and sodium hydride (79 mg ; 80% dispersion in oil, 2.64 mmol) gave, after distillation, a colourless liquid (188 mg , 88.7%) with n.m.r., i.r., and g.l.c. data identical to those for (E)-3-methyl-1-phenylpent-2-ene $[(E)-(20 h)]$.

4-Diphenylphosphinoyl-3-methyl-1-phenylpentan-3-ol.Ethyldiphenylphosphine oxide ($2.3 \mathrm{~g}, 0.01 \mathrm{mmol}$), butyl-lithium $(6.66 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) and 4-phenylbutan-2-one ($1.48 \mathrm{~g}, 0.01$ mol) gave the adduct as a crystalline solid $(3.2 \mathrm{~g}, 84.7 \%)$, m.p. $186-190^{\circ} \mathrm{C}$ (from EtOAc-acetone), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.45$, $v_{\text {max }}$. $3340(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$, and $1175 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ 7.95-6.95 ($15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}$), $4.75(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 3.0-2.4(3 \mathrm{H}$, m, CHP and PhCH$\left.)_{2}\right), 2.0-1.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, and $1.3-0.95$ (total $6 \mathrm{H}, \mathrm{s}$, overlain by dd, $J_{\mathrm{HMe}} 7, J_{\mathrm{MeP}} 16 \mathrm{~Hz}, 2 \times \mathrm{Me}$) (Found: $M^{+}, 378.1757 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ requires $M, 378.1748$); m / z $379(3 \%, M+1), 378(14 \%), 273\left[100 \%, M-\left(\mathrm{CH}_{2}\right)_{2} \mathrm{Ph}\right], 230$ $\left(82 \%, \mathrm{Ph}_{2} \mathrm{POEt}\right)$, and $202\left(84 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$.

Diphenyl-3-phenylpropylphosphine Oxide.-The phosphonium salt method ${ }^{3}$ gave the phosphine oxide (84%) as needles, m.p. $99-101^{\circ} \mathrm{C}$ (from EtOAc-light petroleum, b.p. $60-80^{\circ} \mathrm{C}$) (lit., ${ }^{45} 102-103{ }^{\circ} \mathrm{C}$) (Found: C, 78.8; H, 6.5; P, 10.0. M^{+}, 320.1312. Calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{OP}, \mathrm{C}, 78.7 ; \mathrm{H}, 6.6 ; \mathrm{P}, 9.7 \% . M$, $320.1330), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.3, v_{\text {max. }} 1170 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $\left.7.85-7.0(15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}), 2.7(2 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{PhCH})_{2}\right)$, and $2.45-1.75\left(4 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{CH}_{2}\right), m / z 321(5 \%, M+1), 320$ $(20 \%), 216\left(52 \%, \mathrm{Ph}_{2} \mathrm{POMe}\right), 215\left(10 \%, \mathrm{Ph}_{2} \mathrm{POCH}_{2}{ }^{+}\right)$, and 201 ($12 \%, \mathrm{Ph}_{2} \mathrm{PO}^{+}$).
(1-Methyl-3-phenylpropyl)diphenylphosphine Oxide $\left[22 ; \mathrm{R}^{1}=\right.$ $\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{R}^{2}=\mathrm{Me}$].-Method A. Butyl-lithium ($6.7 \mathrm{ml}, 1.5 \mathrm{M}$ in hexane) was added dropwise from a syringe to a stirred solution of diphenyl-3-phenylpropylphosphine oxide ($3.2 \mathrm{~g}, 0.01$ $\mathrm{mol})$ in dry THF (20 ml) at $0^{\circ} \mathrm{C}$. After 30 min the red reaction solution was cooled to $-78^{\circ} \mathrm{C}$ and iodomethane $(1.4 \mathrm{~g}, 0.01$ mol) was added slowly from a syringe. The colourless reaction solution was allowed to warm to room temperature, water (20 ml) was added, and the THF was evaporated under reduced pressure. The aqueous residue was diluted with brine (15 ml) and extracted with dichloromethane. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give a white crystalline material. Purification by flash column chromatography (elution with EtOAc then acetone) gave the phosphine
oxide ($2.9 \mathrm{~g}, 87.9 \%$), m.p. $84-85^{\circ} \mathrm{C}$ (from EtOAc-light petroleum, b.p. $40-60^{\circ} \mathrm{C}$) (Found: C, 79.0; H, 7.25; P, 9.4. M^{+}, 334.1469. $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{OP}$ requires $\mathrm{C}, 79.0 ; \mathrm{H}, 6.95 ; \mathrm{P}, 9.3 \% . \mathrm{M}$, 334.1486), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.3$, $v_{\text {max. }} 1440(\mathrm{P}-\mathrm{Ph})$ and $1180 \mathrm{~cm}^{-1}$ $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85-6.9(15 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}), 3.0-1.6(5 \mathrm{H}$, $\mathrm{m}, \mathrm{CHCH}_{2} \mathrm{CH}_{2}$) and $1.2\left(3 \mathrm{H}, \mathrm{dd}, J_{\mathrm{HMe}} 7, J_{\mathrm{MeP}} 17 \mathrm{~Hz}, \mathrm{Me}\right) ; m / z$ $335(3 \%, M+1), 334(17 \%), 230\left(100 \%, \mathrm{Ph}_{2} \mathrm{POEt}\right), 202(65 \%$, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$, and $201\left(51 \%, \mathrm{Ph}_{2} \mathrm{PO}^{+}\right)$.

Method B. With TMEDA (1 equiv.), the same alkylation gave, after flash chromatography (eluting with EtOAc then acetone), 1,1-dimethyl-3-phenylpropyl)diphenylphosphine oxide $\left(530 \mathrm{mg}, \quad 15.2 \%\right.$), m.p. $155-157^{\circ} \mathrm{C}$ (from EtOAc-light petroleum, b.p. $60-80^{\circ} \mathrm{C}$) (Found: C, 79.5; H, 7.5; P, 8.8; M^{+}, 348.1630. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{OP}$ requires $\mathrm{C}, 79.3 ; \mathrm{H}, 7.25 ; \mathrm{P}, 8.9 \% ; M$, $348.1643), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.35, v_{\text {max. }} 1440(\mathrm{P}-\mathrm{Ph})$ and $1175 \mathrm{~cm}^{-1}$ $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.15-7.85\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ ortho-protons), $7.6-7.35\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ meta- and para-protons), 7.3-6.9 (5 H, m, remaining Ph$\left.), 2.8-2.5(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH})_{2}\right), 2.1-1.7(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right)$ and $1.3\left(6 \mathrm{H}, \mathrm{d}, J_{\mathrm{MeP}} 16 \mathrm{~Hz}, \mathrm{Me}_{2}\right) ; m / z 349(2 \%, M+1)$, $348(3 \%), 244\left(82 \%, \mathrm{Ph}_{2} \mathrm{POCHMe} 2\right)$, and $202(100 \%$, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$, and the phosphine oxide $\left[22 ; \mathrm{R}^{1}=\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{R}^{2}=\right.$ $\mathrm{Me})(2.53 \mathrm{~g}, 76.6$).

Method C. Butyl-lithium ($7.25 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) was added dropwise from a syringe to a stirred solution of ethyldiphenylphosphine oxide ($5.0 \mathrm{~g}, 21.73 \mathrm{mmol}$) and TMEDA ($2.5 \mathrm{~g}, 21.73$ $\mathrm{mmol})$ in dry THF $(40 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. After $30 \mathrm{~min}, 1$-bromo-2phenylethane ($2.0 \mathrm{~g}, 10.86 \mathrm{mmol}$) was added slowly to the dark red solution; this caused immediate precipitation of a solid. The reaction mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$ and more butyllithium ($7.25 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) was added. After 15 min , 1-bromo-2-phenylethane ($2.0 \mathrm{~g}, 10.86 \mathrm{mmol}$) was added slowly to the reaction mixture and the dark red suspension was allowed to warm to room temperature. After 3 h , water (25 ml) was added to the now yellow reaction mixture and the THF was evaporated under reduced pressure. The aqueous residue was diluted with brine and extracted with dichloromethane. The combined organic extracts were washed with 5% aqueous HCl , dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated to give a yellow oil. Purification by flash column chromatography gave the phosphine oxide [22; $\left.\mathrm{R}^{1}=\mathrm{Ph}\left(\mathrm{CH}_{2}\right)_{2}, \mathrm{R}^{2}=\mathrm{Me}\right](1.47 \mathrm{~g}, 20.1 \%, 80.3 \%$ based on recovered starting phosphine oxide).

4-Diphenylphosphinoyl-4-methyl-1-phenylpentan-3-ol ($\mathbf{2 1 \mathrm { g }}$)-Butyl-lithium ($3.0 \mathrm{ml}, 1.5 \mathrm{M}$ in hexane), (1-methyl-3-phenylpropyl)diphenylphosphine oxide ($1.5 \mathrm{~g}, 4.49 \mathrm{mmol}$), and acetaldehyde in dry THF (30 ml) gave the adduct as a crystalline mixture of diastereoisomers which was separated by flash column chromatography (elution with EtOAc). The first diastereoisomer to elute from the column was obtained as needles ($\mathrm{H} R_{\mathrm{F}}$ isomer) ($650 \mathrm{mg}, 38.2 \%$), m.p. $179-181{ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum, b.p. $60-80^{\circ} \mathrm{C}$) (Found: C, 75.9 ; H , 7.35; P, 8.0. $\mathrm{M}^{+}, 378.1763 . \mathrm{C}_{24} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 76.1 ; \mathrm{H}, 7.2$; P, 8.2. $M, 378.1749$), $R_{\mathbf{F}}(\mathrm{EtOAc}) 0.5$, $v_{\text {max. }} 3430(\mathrm{OH}), 1440$ $(\mathrm{P}-\mathrm{Ph})$, and $1180 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.3-7.85(4 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}_{2} \mathrm{PO}$ ortho-protons), $7.65-7.3\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ meta- and para-protons), $7.25-7.0(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.9-6.7(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $5.1(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 4.2(1 \mathrm{H}, \mathrm{m}, \mathrm{CHOH}), 2.7\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right)$, 2.3-1.75 ($2 \mathrm{H}, \mathrm{m}$, remaining CH_{2}), and $1.3-1.0(6 \mathrm{H}$, two overlapping doublets centred at $c a .1 .15, J_{\text {HMe }} 6, J_{\text {MeP }} 17 \mathrm{~Hz}$, $2 \times \mathrm{Me}) ; m / z 378(4 \%), 243\left[100 \%, \mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{3}{ }^{+}\right], 202(33 \%$, $\left.\mathrm{Ph}_{2} \mathrm{POH}\right)$, and $201\left(26 \%, \mathrm{Ph}_{2} \mathrm{PO}^{+}\right)$. The second diastereoisomer eluted from the column was obtained as needles ($\mathrm{L} R_{\mathrm{F}}$ isomer) $738 \mathrm{mg}, 43.4 \%$), m.p. $193-194{ }^{\circ} \mathrm{C}$ (from EtOAc-light petroleum, b.p. $60-80^{\circ} \mathrm{C}$) (Found: C, 75.9; H, 7.2; P, 8.2. M^{+} $378.1763), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.45$, $v_{\text {max. }} 3330(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$, and $1175 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.15-7.8\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ orthoprotons), $7.6-7.35$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}$ meta- and para-protons), $7.25-7.05(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.0-6.8(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 4.5-4.1(2 \mathrm{H}$,
$\mathrm{m}, \mathrm{CHOH}), 2.7-2.4\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH}_{2}\right), 2.2-1.6(2 \mathrm{H}, \mathrm{m}$, remaining $\left.\mathrm{CH}_{2}\right)$, and $1.45-1.1(6 \mathrm{H}$, two overlapping doublets at $c a .1 .3$ and $1.2, J_{\mathrm{HMe}} c a .7, J_{\mathrm{MeP}} c a .17 \mathrm{~Hz}, 2 \times \mathrm{Me}$); $m / z 378$ $(3 \%), 243\left[100 \%, \mathrm{Ph}_{2} \mathrm{PO}\left(\mathrm{CH}_{2}\right)_{3}{ }^{+}\right], 202\left(37 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$, and $201\left(41 \%, \mathrm{Ph}_{2} \mathrm{PO}^{+}\right)$.
(Z)-3-Methyl-5-phenylpent-2-ene.-Sodium hydride (16 mg; 80% dispersion in oil, 0.529 mmol) was added in one portion to a stirred solution of the $\mathrm{H} R_{\mathrm{F}}$ isomer of adduct ($\mathbf{2 1 g}$) (200 mg , 0.529 mmol) in dry DMF (15 ml). The clear reaction solution was warmed to $50^{\circ} \mathrm{C}$ for 30 min before cooling and adding water (25 ml). The mixture was then diluted with brine (15 ml) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{ml})$. The combined organic extracts were washed with water ($3 \times 40 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$, and the solvent evaporated under reduced pressure. Bulb-tobulb distillation (Kugelrohr apparatus) gave the alkene as a colourless liquid ($78 \mathrm{mg}, 91.8 \%$), $v_{\text {max. }}$. (liquid film) 1610 and 1500 (aryl), $1455,1380,750$, and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CCl}_{4}\right) 7.1(5 \mathrm{H}$, br s, Ph $), 5.1(1 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz},=\mathrm{CH}), 2.75-2.45(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH})$, 2.35-2.1 ($2 \mathrm{H}, \mathrm{m}$, remaining CH_{2}), $1.65(3 \mathrm{H}$, narrow m, $\mathrm{CH}=\mathrm{CMe}$), and $1.4(3 \mathrm{H}$, broadened d, J $7 \mathrm{~Hz}, \mathrm{CHMe}$). Nuclear Overhauser experiments showed the product to be the Z-isomer. The E-isomer was not detected by g.l.c.
(E)-3-Methyl-5-phenylpent-2-ene. In the same way, the $\mathrm{L} R_{\mathrm{F}}$ isomer of adduct (21 g) ($200 \mathrm{mg}, 0.529 \mathrm{mmol}$) and sodium hydride ($16 \mathrm{mg} ; 80 \%$ dispersion in oil, 0.529 mmol) gave, after distillation, the alkene as a colourless liquid ($798 \mathrm{mg}, 92.9 \%$), $v_{\text {max. }}$ (liquid film) 1605 and 1500 (aryl), $1455,1380,750$, and $700 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}}\left(\mathrm{CCl}_{4}\right) 7.1(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{Ph}), 5.15(1 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz},=\mathrm{CH})$, 2.75-2.45 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH})_{2}$, 2.34-2.05 $(2 \mathrm{H}, \mathrm{m}$, remaining CH_{2}), and $1.65-1.4$ (total $6 \mathrm{H}, \mathrm{s}$, at 1.55 overlain by d, $J c a .8$ $\mathrm{Hz}, 2 \times \mathrm{Me}$). Nuclear Overhauser experiments showed the product to be the E-isomer. The Z-isomer was not detected by g.l.c.

3-Diphenylphosphinoyl-3-methyl-5-phenylpentan-2-one (26).-Butyl-lithium ($1.34 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) was added from a syringe to a stirred solution of (1-methyl-3phenylpropyl)diphenylphosphine oxide ($670 \mathrm{mg}, 2.0 \mathrm{mmol}$) in dry THF (20 ml) at $0^{\circ} \mathrm{C}$. After 30 min the dark red solution was cooled to $-60^{\circ} \mathrm{C}$ and added dropwise, using a double-ended needle, to a stirred suspension of copper(I) iodide $(382 \mathrm{mg}, 2.0$ mmol) in dry THF (20 ml) also at $-60^{\circ} \mathrm{C}$. After being stirred at $-35^{\circ} \mathrm{C}$ for 2 h , the dark green reaction mixture was cooled to $-50^{\circ} \mathrm{C}$ and freshly distilled acetyl chloride ($157 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added dropwise from a syringe. The reaction solution was stirred a further 1.5 h and allowed to warm to room temperature overnight. Water (20 ml) was added to the pale yellow solution and the THF was evaporated under reduced pressure. The aqueous residue was stirred with brine (30 ml) and dichloromethane (50 ml), and filtered through Hyflo. The aqueous phase was separated and extracted with dichloromethane ($3 \times 50 \mathrm{ml}$); the combined organic phases were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the crude product. Purification by flash column chromatography (eluting with EtOAc) gave the ketone as needles ($480 \mathrm{mg}, 63.7 \%$), m.p. 97$100^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum, b.p. $60-80^{\circ} \mathrm{C}$) (Found: C, 76.7; $\mathrm{H}, 6.75 ; \mathrm{P}, 8.2 . M^{+}, 376.1581 . \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 76.5$; $\mathrm{H}, 6.7$; P, $8.2 \% . M, 376.1592), R_{\mathrm{F}}(\mathrm{EtOAc}) 0.5, v_{\max } 1700(\mathrm{C}=\mathrm{O})$, $1440(\mathrm{P}-\mathrm{Ph})$, and $180 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.05-7.0(15$ $\left.\mathrm{H}, \mathrm{m}, 3 \times \mathrm{Ph}), 2.85-2.35(2 \mathrm{H}, \mathrm{m}, \mathrm{PhCH})_{2}\right), 2.2(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe})$, 2.15-1.8 ($2 \mathrm{H}, \mathrm{m}$, remaining CH_{2}), and $1.5(3 \mathrm{H}, \mathrm{d}, J 16 \mathrm{~Hz}$, PCMe); $m / z 377(4 \%, M+1), 376(2 \%), 272\left(30 \%, M-\mathrm{C}_{8} \mathrm{H}_{8}\right)$, and $201\left(100 \%, \mathrm{Ph}_{2} \mathrm{PO}^{+}\right)$.

Reduction of 3-Diphenylphosphinoyl-3-methyl-5-phenyl-pentan-2-one (26).-Sodium borohydride ($11 \mathrm{mg}, 0.266 \mathrm{mmol}$)
reduction of the ketone (26) ($100 \mathrm{mg}, 0.266 \mathrm{mmol}$) gave the adduct as a mixture of diastereoisomers ($99 \mathrm{mg}, 98.0 \%$). N.m.r. analysis showed the product was a 66:33 mixture of $L R_{F}$ and $\mathrm{H} R_{\mathrm{F}}$ adducts.
(4-Methylpent-3-enyl)diphenylphosphine oxide (24).-Butyllithium ($25 \mathrm{ml}, 1.5 \mathrm{~m}$ in hexane) was added dropwise from a syringe to a stirred suspension of methyldiphenylphosphine oxide $(8.0 \mathrm{~g}, 0.037 \mathrm{~mol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(110 \mathrm{ml})$. After 30 min the pale yellow suspension was cooled to $-78^{\circ} \mathrm{C}$ and 1 -bromo-3-methylbut-2-ene ($5.5 \mathrm{~g}, 0.037 \mathrm{~mol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{ml})$ was added dropwise. The reaction mixture was allowed to warm to $20^{\circ} \mathrm{C}$ and water (120 ml) was added. The aqueous phase was separated and extracted with dichloromethane ($3 \times 100 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent was evaporated under reduced pressure. Purification by flash column chromatography (elution with EtOAc) gave two products; the first to be eluted from the column was the dialkylated product, 4-methyl-1-[(2-methylbut-2-enyl)pent-3enyl]diphenylphosphine oxide ($1.3 \mathrm{~g}, 10.0 \%$), m.p. $130-131^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$) (Found: $\mathrm{C}, 78.3 ; \mathrm{H}, 8.35 ; \mathrm{P}, 8.9 . \mathrm{M}^{+}, 352.1953$. $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{OP}$ requires $\mathrm{C}, 78.3 ; \mathrm{H}, 8.3 ; \mathrm{P}, 8.8 \% ; M, 352.1956$), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.55, v_{\text {max }} 1440(\mathrm{P}-\mathrm{Ph})$ and $1180 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.95-7.7\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ ortho-protons), $7.5-7.3$ $\left(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ meta- and para-protons), $5.05(2 \mathrm{H}, \mathrm{m}$, $2 \times=\mathrm{CH}), 2.3\left[5 \mathrm{H}, \mathrm{m}, \mathrm{PCH}\left(\mathrm{CH}_{2}\right)_{2}\right], 1.55(5 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me})$, and $1.45(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{Me}) ; m / z 353(5 \%, M+1), 352(15 \%)$, 283 $\left(36 \%, M-\mathrm{C}_{5} \mathrm{H}_{9}\right)$, and $202\left(100 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$. The second compound eluted from the column was the phosphine oxide (21) $\left(7.1 \mathrm{~g}, 67.6 \%\right.$), m.p. $68-69^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-light petroleum, b.p. $40-60^{\circ} \mathrm{C}$) (Found: C, 76.2; H, 7.5; P, 10.9. $M^{+}, 284.1340$. $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{OP}$ requires C, 76.0; $\mathrm{H}, 7.5 ; \mathrm{P}, 10.9 \% . M, 284.1330$), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.45, v_{\text {max }} 1445(\mathrm{P}-\mathrm{Ph})$ and $1185 \mathrm{~cm}^{-1}(\mathrm{P}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.85-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.1(1 \mathrm{H}, \mathrm{m},=\mathrm{CH}), 2.3$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.65(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, and $1.55(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m / z$ $284(39 \%), 215\left(41 \%, \mathrm{Ph}_{2} \mathrm{POCH}_{2}{ }^{+}\right)$, and $202\left(100 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$.

Methyl 4-Methylcyclohex-3-enyl Ketone (23). ${ }^{17}$-Methyl vinyl ketone ($20 \mathrm{~g}, 0.285 \mathrm{~mol}$) isoprene ($23.3 \mathrm{~g}, 0.342 \mathrm{~mol}$) and anhydrous stannic chloride ($13.4 \mathrm{~g}, 0.051 \mathrm{~mol}$) in dry toluene $(100 \mathrm{ml})$ gave, after distillation, a colourless liquid ($29 \mathrm{~g}, \mathrm{~b} . \mathrm{p}$. $92^{\circ} \mathrm{C} / 20 \mathrm{mmHg}$) which was treated with semicarbazide hydrochloride and then hydrolysed by the method of Manjarrez, Rios, and Guzman. ${ }^{46}$ Redistillation gave the ketone (20) as a colourless liquid ($27.9 \mathrm{~g}, 70.8 \%$), b.p. $91-92^{\circ} \mathrm{C} / 20$ mmHg (lit., ${ }^{46}$ b.p. $45-47^{\circ} \mathrm{C} / 0.5 \mathrm{mmHg}$); $R_{\mathrm{F}} 0.8, v_{\text {max. }}$. (liquid film) $1710(\mathrm{C}=\mathrm{O})$ and $800 \mathrm{~cm}^{-1}(=\mathrm{C}-\mathrm{H}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 5.4(1 \mathrm{H}, \mathrm{m}$, $=\mathrm{CH}$), 2.65-2.4 (1 H, m, ring CH), 2.25-1.9 (total 9 H , m overlain by s at 2.2 , ring CH_{2} and COMe), and $1.7(3 \mathrm{H}$, br s, ring Me).

3-Diphenylphosphinoyl-2-(4-methylcyclohex-3-enyl)-6-methylhept-5-en-2-ol (19i).-Butyl-lithium (4.7 ml , 1.5 M in hexane) was added dropwise from a syringe to a stirred solution of the phosphine oxide (24) $(2.0 \mathrm{~g}, 7.037 \mathrm{mmol})$ in dry THF (30 ml) at $0^{\circ} \mathrm{C}$. After 30 min the dark red reaction solution was cooled to $-78^{\circ} \mathrm{C}$ (acetone-dry ice) and a solution of the ketone (20) $(975 \mathrm{mg}, 7.037 \mathrm{mmol})$ in dry THF (10 ml) was added from a syringe. The rate of addition was such that the internal solution temperature was maintained at $-78^{\circ} \mathrm{C}$. The pale yellow solution was allowed to warm to room temperature (over ca. 2 h) and water (10 ml) was added. The THF was removed under reduced pressure and the aqueous residue was diluted with brine (30 ml) and extracted with dichloromethane ($3 \times 30 \mathrm{ml}$). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give the adduct (19i) as a mixture of diastereoisomers. Two pairs of diastereoisomers were separated by flash column chromatography (elution with EtOAc then
acetone); the first pair of diastereoisomers $\left(\mathrm{H} R_{\mathrm{F}}\right)$ eluted from the column was obtained as a white amorphous solid ($1.6 \mathrm{~g}, 53.3 \%$). A sample was recrystallised from EtOAc-light petroleum, b.p. $60-80^{\circ} \mathrm{C}$, to give the ($2 R S, 3 S R$)-adduct as needles, m.p. $174-$ $177{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 76.6 ; \mathrm{H}, 8.3$; $\mathrm{P}, 7.7 . M^{+}$, 422.2373. $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{P}$ requires $\mathrm{C}, 76.6 ; \mathrm{H}, 8.35 ; \mathrm{P}, 7.3 \% . M, 422.2375$), $R_{\mathrm{F}}(\mathrm{EtOAc}) 0.6, v_{\text {max. }} 3470(\mathrm{OH}), 1440(\mathrm{P}-\mathrm{Ph})$, and $1170 \mathrm{~cm}^{-1}$ $(\mathrm{P}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 8.05-7.6\left(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ ortho-protons), $7.55-7.25\left(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right.$ meta- and para-protons), $5.4(1 \mathrm{H}, \mathrm{m}$, ring $=\mathrm{CH}), 4.9(1 \mathrm{H}$, br t, $J c a .6 \mathrm{~Hz}$, remaining $=\mathrm{CH}), 4.3(1 \mathrm{H}, \mathrm{br}$ $\mathrm{s}, \mathrm{OH}), 2.85-2.4(2 \mathrm{H}, \mathrm{m}$, ring CH and PCH$), 2.35-1.75(8 \mathrm{H}$, $\left.\mathrm{m}, 4 \times \mathrm{CH}_{2}\right), 1.6$ and $1.55\left(6 \mathrm{H}, 2 \times \mathrm{s},=\mathrm{CHMe} e_{2}\right), 1.15(3 \mathrm{H}, \mathrm{s}$, ring Me), and $1.05(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}) ; m / z 423(9 \%, M+1), 422(26 \%)$, $327\left(68 \%, M-\mathrm{C}_{7} \mathrm{H}_{11}\right)$, and $202\left(100 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$. The second pair of diastereoisomers ($\mathrm{L} R_{\mathrm{F}}$) eluted from the column was obtained as an impure oil ($123 \mathrm{mg}, 4.1 \%$); R_{F} (EtOAc) 0.55 ; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 7.95-7.3\left(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}_{2} \mathrm{PO}\right), 5.4(1 \mathrm{H}, \mathrm{m}$, ring $=\mathrm{CH})$, $5.3-4.85(2 \mathrm{H}, \mathrm{m}, \mathrm{OH}$ and remaining $=\mathrm{CH}), 2.6-1.85\left(\mathrm{~m}, \mathrm{CH}_{2}\right)$ and 1.8-1.2 (multiple singlets, Me) (Found: $\left.M^{+}, 422.2361\right) ; ~ m / z$ $423(4 \%, M+1), 422(11 \%), 307(100)$, and $202\left(40 \%, \mathrm{Ph}_{2} \mathrm{POH}\right)$.
(Z)- α-Bisabolene (20i).-Sodium hydride (14 mg; 80\% dispersion in oil, 0.473 mmol) was added in one portion to a stirred solution of the $\mathrm{H} R_{\mathrm{F}}$ pair of isomers of adduct (24) (200 $\mathrm{mg}, 0.473 \mathrm{mmol}$) in dry DMF (25 ml). The clear reaction solution was stirred at $70^{\circ} \mathrm{C}$ for 1 h , cooled, and water (25 ml) was added. The mixture was diluted with brine (15 ml) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{ml})$. The combined organic extracts were washed with water ($3 \times 30 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure. Bulb-tobulb distillation (Kugelrohr apparatus) gave (Z)- α-bisabolene (19i) as a colourless liquid ($88 \mathrm{mg}, 90.7 \%$) possessing a green and flowery odour and giving an n.m.r. spectrum (400 MHz) identical to that described in the literature for the (Z)-isomer. ${ }^{35}$ I.r. and g.l.c. (column 1) analysis showed the product to contain a trace of the ketone (23), but the (E)-isomer was not detected.
(E)- α-Bisabolene (20i).-Powdered potassium hydroxide (14 $\mathrm{mg} ; 85 \% \mathrm{KOH}, 0.206 \mathrm{mmol}$) was added in one portion to a stirred solution of the $\mathrm{L} R_{\mathrm{F}}$ isomers of adduct ($\mathbf{1 9 i}$) $(87 \mathrm{mg}, 0.206$ $\mathrm{mmol})$ in dry DMSO $(5 \mathrm{ml})$. The reaction solution was stirred for 1 h at $50^{\circ} \mathrm{C}$, cooled and water (10 ml) was added. The mixture was diluted with brine (10 ml) and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ($3 \times 15 \mathrm{ml}$). The combined organic extracts were washed with water ($3 \times 15 \mathrm{ml}$), dried $\left(\mathrm{MgSO}_{4}\right)$ and the solvent evaporated under reduced pressure. Bulb-to-bulb distillation (Kugelrohr apparatus) gave (E)- α-bisabolene as a colourless liquid (35 mg , 83.3%) possessing a woody-herbal odour and giving an n.m.r. spectrum (400 MHz) identical to that described in the literature for the (E)-isomer. ${ }^{35}$ G.l.c. analysis (column 1) showed the product to contain a trace of the ketone (23), but the (Z)-isomer was not detected.

Acknowledgements

We thank the S.E.R.C. for grants, Glaxo Group Research (Ware) for CASE awards (to A. D. B. and N. G.), and Dr. Barry Price and Dr. Eric Collington for many helpful discussions.

References

1 L. Horner, H. Hoffmann, H.-G. Wippel, and G. Klahre, Chem. Ber., 1959, 92, 2499; L. Horner, H. Hoffmann, W. Klink, H. Ertel, and V. G. Toscano, ibid., 1962, 95, 581.

2 A. D. Buss and S. Warren, J. Chem. Soc., Chem. Commun., 1981, 100; Tetrahedron Lett., 1983, 24, 3931.
3 A. D. Buss and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2307.
4 A. D. Buss, R. Mason, and S. Warren, Tetrahedron Lett., 1983, 24, 5293.

5 H. M. Okely and M. F. Grundon, J. Chem. Soc., Perkin Trans. 1, 1981, 897.
6 E. Späth and J. Bruck, Chem. Ber., 1938, 71, 2708.
7 M. Jacobson, K. Ohinata, D. L. Chambers, W. A. Jones, and M. S. Fujimoto, J. Med. Chem., 1973, 16, 248; M. Jacobson, I. Keiser, D. L. Chambers, D. H. Miyashita, and C. Harding, ibid., 1971, 14, 236.
8 G. Jones, M. A. Acquadro, and M. A. Carmody, J. Chem. Soc.. Chem. Commun., 1975, 206.
9 A. G. Martinez and M. O. Ruiz, Synthesis, 1983, 663.
10 M. Schlosser, H. B. Tuong, and B. Schaub, Tetrahedron Lett., 1985, 26, 311.
11 R. S. Torr and S. Warren, J. Chem. Soc. Pak., 1979, 1, 15.
12 W. C. Still, M. Kahn, and A. Mitra, J. Org. Chem., 1978, 43, 2923.
13 R. Baker and D. A. Evans, Annu. Rep. Prog. Chem., Sect. B, Org. Chem., 1975, 72, 347; R. Baker and J. W. S. Bradshaw, ibid., 1979, 76, 404.

14 H. J. Bestmann, K. H. Koschatzky, W. Schätzke, J. Süss, and O. Vostrosvsky, Liebigs Ann. Chem., 1981, 1705.
15 G. Ohloff, C. Vial, F. Näf, and M. Pawlak, Helv. Chem. Acta, 1977, 60, 1161.
16 H. Yu, B. Zang, and X. Han, Kunchong Zhishi, 1983, 20, 105 (Chem. Abstr., 1983, 99, 175425).
17 O. P. Vig, M. L. Sharma, M. Gakhar, and N. Malik, Ind. J. Chem., Sect. B, 1980, 19, 755.
18 H. J. Bestmann and K. Li, Tetrahedron Lett., 1981, 22, 4941.
19 A. D. Buss, N. Greeves, D. Levin, P. Wallace, and S. Warren, Tetrahedron Lett., 1984, 25, 357.
20 D. J. Faulkner, Synthesis, 1971, 175.
21 C. H. Heathcock in 'The Total Synthesis of Natural Products,' ed. J. ApSimon, Wiley, New York, 1973, vol. 2, pp. 207-222; 1983, vol. 5, pp. 11-17.
22 A. Marfat, P. R. McGuirk, and P. Helquist, J. Org. Chem., 1979, 44, 3888; J. R. Normant and A. Alexakis, Synthesis, 1981, 841; G. Zweifel and J. A. Miller, Org. React., 1984, 32, 375.
23 N. Jabri, A. Alexakis, and J. R. Normant, Tetrahedron Lett., 1981, 22, 959.

24 H. Takei, H. Sugimura, M. Miura, and H. Okamura, Chem. Lett., 1980, 1209.
25 J. E. McMurry and W. J. Scott, Tetrahedron Lett., 1980, 21, 4313.

26 T. Hayashi, Y. Katsuro, and M. Kumada, Tetrahedron Lett., 1980, 21, 3915.
27 H. J. Bestmann and A. Bomhard, Angew. Chem., Int. Ed. Engl., 1982, 21, 545.
28 C. Sreekumar, K. P. Darst, and W. C. Still, J. Org. Chem., 1980, 45, 4260.

29 Preliminary communication: A. D. Buss and S. Warren, Tetrahedron Lett., 1983, 24, 111.
30 J. I. Grayson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1977, 2263.
31 C. Earnshaw, C. J. Wallis, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1979, 3099.
32 D. J. Cavalla and S. Warren, Tetrahedron Lett., 1982, 23, 4505; 1983, 24, 295.
33 C. A. Cornish and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1985, 2585.

34 A. D. Buss, S. Warren, J. S. Leake, and G. H. Whitham, J. Chem. Soc., Perkin Trans. 1, 1983, 2215.
35 F. Delay and G. Ohloff, Helv. Chim. Acta, 1979, 62, 369.
36 S. Warren, 'Organic Synthesis. The Disconnection Approach,' Wiley, Chichester, 1982, p. 348.
37 E. F. Lutz and G. M. Bailey, J. Am. Chem. Soc., 1964, 86, 3899.
38 H. Staudinger, W. Kreis, and W. Schilt, Helv. Chim. Acta, 1922, 5, 743 (Chem. Abstr., 1923, 17, 2974).
39 A. H. Davidson and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1976, 639.

40 A. H. Davidson, I. Fleming, J. I. Grayson, A. Pearce, R. L. Snowden, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1977, 550.
41 C. Earnshaw, J. I. Grayson, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1979, 1506.
42 C. Earnshaw, R. S. Torr, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1983, 2893.
43 V. Petrow, J. Med. Chem., 1977, 20, 781.
44 J. I. Grayson, H. K. Norrish, and S. Warren, J. Chem. Soc., Perkin Trans. 1, 1976, 2556.
45 J. R. Shutt and S. Trippett, J. Chem. Soc. C, 1969, 2038.
46 A. Manjarrez, T. Rios, and A. Guzmán, Tetrahedron, 1964, $20,333$.

Received 11th September 1986; Paper 6/1815

